基于时空的图(STMAP)方法显示出为车辆轨迹重建处理高角度视频的巨大潜力,可以满足各种数据驱动的建模和模仿学习应用的需求。在本文中,我们开发了时空深嵌入(STDE)模型,该模型在像素和实例水平上施加了平等约束,以生成用于STMAP上车辆条纹分割的实例感知嵌入。在像素级别上,每个像素在不同范围的8-邻居像素进行编码,随后使用该编码来指导神经网络学习嵌入机制。在实例级别上,歧视性损耗函数被设计为将属于同一实例的像素更接近,并将不同实例的平均值分开。然后,通过静脉 - 沃特算法算法优化时空亲和力的输出,以获得最终的聚类结果。基于分割指标,我们的模型优于其他五个用于STMAP处理的基线,并在阴影,静态噪声和重叠的影响下显示出稳健性。该设计的模型用于处理所有公共NGSIM US-101视频,以生成完整的车辆轨迹,表明具有良好的可扩展性和适应性。最后但并非最不重要的一点是,讨论了带有STDE和未来方向的扫描线方法的优势。代码,STMAP数据集和视频轨迹在在线存储库中公开可用。 github链接:shorturl.at/jklt0。
translated by 谷歌翻译
We study representation learning for efficient imitation learning over linear systems. In particular, we consider a setting where learning is split into two phases: (a) a pre-training step where a shared $k$-dimensional representation is learned from $H$ source policies, and (b) a target policy fine-tuning step where the learned representation is used to parameterize the policy class. We find that the imitation gap over trajectories generated by the learned target policy is bounded by $\tilde{O}\left( \frac{k n_x}{HN_{\mathrm{shared}}} + \frac{k n_u}{N_{\mathrm{target}}}\right)$, where $n_x > k$ is the state dimension, $n_u$ is the input dimension, $N_{\mathrm{shared}}$ denotes the total amount of data collected for each policy during representation learning, and $N_{\mathrm{target}}$ is the amount of target task data. This result formalizes the intuition that aggregating data across related tasks to learn a representation can significantly improve the sample efficiency of learning a target task. The trends suggested by this bound are corroborated in simulation.
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
从广泛的流量监视传感器收集的旅行时间数据需要大数据分析工具来查询,可视化和识别有意义的流量模式。本文利用了Caltrans性能测量系统(PEMS)系统的大规模旅行时间数据集,该系统是传统数据处理和建模工具的溢出。为了克服大量数据的挑战,大数据分析引擎Apache Spark和Apache MXNET用于数据争吵和建模。进行季节性和自相关以探索和可视化时变数据的趋势。受到许多人工智能(AI)任务的层次结构成功的启发,我们巩固了细胞和隐藏状态,从低级到高级LSTM传递,其注意力集中在类似于人类感知系统的运作方式上。设计的分层LSTM模型可以在不同的时间尺度上考虑依赖项,以捕获网络级别旅行时间的时空相关性。然后,设计了另一个自我发场模块,以将LSTM提取的功能连接到完全连接的层,从而预测所有走廊的旅行时间,而不是单个链接/路线。比较结果表明,层次的LSTM引起注意(HIERLSTMAT)模型在30分钟和45分钟的视野时给出了最佳的预测结果,并且可以成功预测不寻常的拥塞。通过将它们与流行的数据科学和深度学习框架进行比较,从大数据分析工具中得出的效率得到了评估。
translated by 谷歌翻译
本文提出了一种机器学习增强的纵向扫描线方法,用于从大角度交通摄像机中提取车辆轨迹。通过将空间颞映射(STMAP)分解到稀疏前景和低秩背景,应用动态模式分解(DMD)方法来提取车辆股线。通过调整两个普遍的深度学习架构,设计了一个名为Res-Unet +的深神经网络。 RES-UNET +神经网络显着提高了基于STMAP的车辆检测的性能,DMD模型提供了许多有趣的见解,了解由Stmap保留的潜在空间结构的演变。与先前的图像处理模型和主流语义分割深神经网络进行比较模型输出。经过彻底的评估后,证明该模型对许多具有挑战性的因素来说是准确和强大的。最后但并非最不重要的是,本文从根本上解决了NGSIM轨迹数据中发现了许多质量问题。清除清洁的高质量轨迹数据,以支持交通流量和微观车辆控制的未来理论和建模研究。该方法是用于基于视频的轨迹提取的可靠解决方案,并且具有广泛的适用性。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
深度学习表明,最近在胸部X射线中对异常进行分类方面的成功,但是与自然图像数据集相比,数据集仍然很小。对异常本地化的监督已被证明可以改善训练有素的模型,部分补偿了数据集大小。但是,明确标记这些异常需要专家,并且非常耗时。我们提出了一种潜在的可扩展方法,用于使用眼动物跟踪器收集隐式定位数据,以捕获注视位置和麦克风来捕获报告的概念,从而模仿阅读室的设置。由五位放射科医生标记了所得的反射式(报告和眼睛跟踪数据,用于胸部X射线异常的定位)数据集,并包含3,032个同步的眼球跟踪数据集和时间戳报告的同步集,并从模拟的报告中进行了2,616胸部X射线的转录。 CXR数据集。我们还提供辅助注释,包括围绕肺和心脏的边界框以及由椭圆形成的椭圆形成异常和图像级标签的验证标签。此外,数据的一小部分包含所有放射科医生的读数,从而可以计算评估者分数。
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译